
Detecting Cross-Project Clones Using Frequent
Pattern Mining
Ronica Raj1 , Vishakha Vinod2

1,2Student ,
Sathyabama University ,

Chennai, India.

Abstract—Code Clones are the similar program structures in
a software system. It is one of the main factors in the
degradation of the design and structure of software. It
complicates the maintenance and evolution of software. There
are two types of code clones generally encountered in a
software system i.e. Simple code and Complex code clones. In
this paper our aim is to generate a system to detect the code
clones in an input source text i.e. source code file or the
application as a whole is given as an input to the system where
it is processed. Second step includes segregating the clones
detected into efficient and inefficient clones i.e. the clones in
the input file is segregated into the ones which are useful and
the other ones which are waste and need to be discarded. The
third step is discarding the inefficient ones i.e. here the
inefficient clones which are found are discarded from the code
and saved into a temporary folder.

Keywords—Code clones, detection, efficient and inefficient
clones, frequent pattern mining.

I. INTRODUCTION
Code clones or just clones are the similar fragments of
codes used within a program or different programs that are
maintained by the same entity. These clones arise due to
variety of reasons and can be harmful for program as well as
to the entity that owns it. Copy and paste of the program and
plagiarism are two most common reasons due to which
cones arise. It increases the chances of continuation of the
bugs which occurred in the clone copied, increases the
maintenance cost, it may involve the increment of the
number of resources to be used, may involve a large number
of modifications which may also introduce some bugs. It
may also be helpful if the cloning is done carefully.
Detection of code clones can be done using various
algorithms like Baker’s algorithm, Rabin karp, Syntax trees,
visually and using Pattern mining approaches. In our project
to generate a system which detects not only the simple
clones but also the structural clones, segregating them into
the efficient and non-efficient ones which would help to
eliminate the ones which are harmful for the program or the
application.

II. LITERATURE SURVEY

Cloning is a common phenomenon found in almost all kinds
of software systems. It has a negative impact on the
maintenance of large software systems. There are four types
of code clones which can be identified in a given source
code. Type 1 includes identical code fragments except white
spaces and comments; type 2 contains structurally and
syntactically identical fragments except identifiers, literals,

types, layouts and comments; type 3 includes the copied
fragments of a source code that can be further modified and
type 4 includes those code fragments which are used for
executing the same logic but are implemented through
different syntactic variants. There are number of
commercial and public software systems that have been
generated the above listed types of software clones based on
many different approaches. Most commonly used approach
for this purpose is an Association Mining technique known
as Apriori algorithm. This approach involves generation of a
large number of candidate sets (2|s| -1) which makes it a very
tedious, hard task and time consuming. Other algorithms
which were used for clone detection are Karp-Rabin’s string
matching, Baxter et al.’s variation on AST, Undocumented
relies on Java AST. The tools generated using these
algorithms in the previous works could only support a few
programming languages for example: a tool named PMD
using Karp-Rabin’s string matching algorithm could only
support C, C++, JSP, Java, PHP, Fortran and Ruby.
Similarly a tool called CodePro based on Undocumented
relies on Java AST could only support Java programming
language. After considering all these tools and their results
It was found that PMD finds a large number of small
occurrences and also ignores slightly different clones.
Bauhaus allows little differences in the clones resulting in
larger detected occurrences. These differences were due to
the different types of algorithms for detecting duplicated
codes and their features.

III. PROPOSED SYSTEM

The proposed method is based on data mining technique
called Frequent Pattern Growth algorithm. This approach
allows discovering frequent itemsets without generating
candidate itemsets. Two main steps involved in this
algorithm are building a compact data structure (known as
FP tree) and finally extracting the frequent itemsets directly
from the tree. The proposed work consists of 5 phases:
Authentication, Component selection, Token with clones,
Clone detection and refactoring, Testing and Evaluation.
A. Authentication
This is the first phase of the proposed method. In this phase
two features are provided namely login and registration. The
new users of this application can register before they get
access to the internal features of this clone detector and
those who are already registered can provide the application
with the user name and password as the input and if the
input is valid or authenticated, the person is redirected to the
other features of the application.

Ronica Raj et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4241-4244

www.ijcsit.com 4241

ISSN:0975-9646

B. Component Selection
After the authentication phase, when the user is redirected
inside the application he has to select the feature he needs to
use according to his requirements. Here in the proposed
system a feature is provided of using a single program or a
whole application source code (Fig 1).

Fig1. Uploading a project

C. Token with clones
After the component selection the next step involved the
clone detection is finding the tokens which are repeated in
the input source code file.

D. Clone detection and refactoring
After detecting the tokens that occur in the source code the
aim is to detect the structural and functional clones (Fig 2)
which could either be harmful for developer or may create
problems during maintenance of the application. Such
clones are removed from the source code and it is
restructured to eliminate the negative effects of the detected
clones.

Fig2. Functional Clones

E. Testing and Evaluation
After the clone detection phase and eliminating the clones
the source code is tested to verify and confirm its validity.
Finally, the analysis helps to refactor the code according to
the requirement. Fig 3 represents the flow of the process for
the system.

Fig3. Block Diagram

After the analysis of the source code given as input, the
result has been displayed in the form of tables. Table 1 and
Table 2 represent the unrepeated functions recognized in
Hospital Management System and Library Management
System respectively whereas the Table 3 and Table 4
represent the repeated functions in Hospital and Library
Management System respectively.

Login/ register

Input the
source code

Detect the token
with clones

Database

Detect the
functional clones

Using FP
Growth

Algorithm

Analyze clone
and testing

Efficient
clones

Save into
permanent

file

Inefficient
clones

Discard and
save into

temporary file

Refactor
the source

code

Ronica Raj et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4241-4244

www.ijcsit.com 4242

Table 1.Unrepeated Functions- Hospital Management System

Table 2.Unrepeated Functions- Library Management System

Table 3.Repeated Function- Hospital Management System

Fid Fname Task

1 Button1_Click(object sender, EventArgs e) Go to doctor’s page

2 appbtn_Click(object sender, EventArgs e) To get appointment of the specialist doctor

3 pttyddl_SelectedIndexChanged(object sender, EventArgs e) To view the outpatient details

4 Page_Load(object sender, EventArgs e) To add the inpatient outpatient details

5 Button1_Click(object sender, EventArgs e) To Insert the patient information

6 Calendar1_SelectionChanged(object sender, EventArgs e) To select the appointment date

7 Button1_Click(object sender, EventArgs e) To view particular patient details

8 canbtn_Click(object sender, EventArgs e) To view Hospital employee login page

9 pidddl_SelectedIndexChanged(object sender, EventArgs e) To get the medical test

10 pttypeddl_SelectedIndexChanged(object sender, EventArgs e) To view the inpatient details

11 PID_SelectedIndexChanged(object sender, EventArgs e) To allocate the patient admission date

12 Button1_Click(object sender, EventArgs e) To view overall patient details.

13 Button3_Click(object sender, EventArgs e) To view discharge patient details

14 subbtn_Click(object sender, EventArgs e) employee signup

15 Resbtn_Click(object sender, EventArgs e) employee registration

Fid Fname Task

1 ImageButtonSearch_Click1(object sender, ImageClickEventArgs e) It is used for searching the books

2 UpdateCategoryToDDL() Updating the search usage.

3 flush() to refresh the category of books

4 Gen(string emailid,string Message) To send the message to user

5 ddlMemberID_SelectedIndexChanged(object sender, EventArgs e) To update the member id

6 ddlBookName_SelectedIndexChanged(object sender, EventArgs e) To Update the book name

7
GridViewMemberInfo_RowDeleting(object sender,
GridViewDeleteEventArgs e)

To delete the unwanted record

8
ddlDropBookPublisher_SelectedIndexChanged(object sender,
EventArgs e)

To view the books dynamically

9 btnMakeEntry_Click(object sender, EventArgs e) For Adding new member

10 AddOrUpdateBookInfo(GlobalAttributes _ga) To add or update book information

11 DataTable GetBookConsumerList() To get the consumer list by using data table.

12 DeleteMemberInfo(GlobalAttributes _ga) To delete the member information

13
GridViewMemberInfo_RowDeleting(object sender,
GridViewDeleteEventArgs e)

To delete the unwanted record

14 AddBookLendEntry(GlobalAttributes _ga) To insert the books to database

Fid Fname
No. of times

repeated
Task

1 Page_Load(object sender, EventArgs e) 8 To load asp.net page

2 Page_Load(object sender, EventArgs e) 2
To load page and retrieve patient
information from database

3
pidddl_SelectedIndexChanged(object sender,
EventArgs e)

2 To get the appointment from the doctor

4 Button2_Click(object sender, EventArgs e) 2 To redirect to the next page

5 void Page_Load(object sender, EventArgs e) 3 Doctor’s signup process

6 backbtn_Click(object sender, EventArgs e) 2 Redirect to the next page

Ronica Raj et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4241-4244

www.ijcsit.com 4243

Table 4.Repeated Function- Library Management System
Fid Fname No. of times repeated Task

1 Page_Load() 4 To load the page

2 Page_Load() 4 To load page with calling method

3 ddlBookEdition_SelectedIndexChanged() 2 To select the word going to changed

Table 5 Final Report- Repeated Functions

Fid Fname Task
1 Page_Load(object sender, EventArgs e) To load asp.net page
2 Page_Load(object sender, EventArgs e) To load page with calling method

Table 5 represents the functions repeated in both the sample
applications i.e. Hospital and Library Management System.

IV. CONCLUSION AND FUTURE WORK
The tool developed is easy to use and also can be used for
multiple programming languages. In this tool, the clone
detection is implemented using frequent pattern growth
algorithm which includes tree data structure and array
format which makes the clone detection easy and time
saving. At the end a graph will be generated to evaluate the
total time taken by the frequent pattern growth algorithm to
complete its detection work. This algorithm is potentially
faster and easier to use and work with as compared to the
other pattern mining algorithm which makes it more
efficient and cost effective.

This tool will be used to find beneficial clones. These
beneficial clones will be used in the area of software
engineering to provide support in developing quality
software products.

REFERENCES
[1] Girija Gupta and Indu Singh, “A Novel Approach Towards Code

Clone Detection and Redesigning”, International Journal Of
Advanced Research in Computer Science and Software Detection,
September 2013, Volume 3.

[2] M Suman, T Anuradha, K Gowtham, A Ramakrishna, “Frequent
Pattern Mining Algorithm Based on FP Tree Structure and Apriori
Algorithm”, International Journal of Engineering Research and
Application, January 2012 Volume 2.

[3] Florian Verhein, “Frequent Pattern Growth (FP Growth) Algorithm”,
January 2008.

[4] Chanchal Kumar Roy and James R. Cordy “A Survey on Software
Clone Detection Research”, September 2007.

[5] Jiawei Han, Hong Cheng, Dong Xin, Xifeng Yan, “Frequent Pattern
Mining: current status and future directions”, January 2007.

[6] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant Anna,
Lorraine Beir, “Clone Detection Using Abstract Syntax Tress”.

[7] Lingxiao Jiang, Ghassan Mishergi, Zhendong Su, Stephane Glondu,
“Scalable and Accurate Tree-based Detection of Code Clones”.

[8] Bjorn Bringmann, Siegfried Nijssen and Albrecht Zimmermann,
“Pattern-Based Classification: A Unifying Perspective”.

[9] Matthias Rieger and Stephane Ducasse, “Visual Detection of
Duplicated Code”.

[10] Shihab Rahman, Dolon Chanpa, “FP Growth Algorithm For Mining
Frequent Pattern”.

[11] Depti pawar, Mrs.Sankriti Shiravale
“http://www.slideshare.net/deepti92pawar/the-comparative-
study-of-apriori-and-fpgrowth-algorithm#”, March 2013.

Ronica Raj et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4241-4244

www.ijcsit.com 4244

